
TECHNICAL WHITE PAPER

Insights from Engineering
Robustness in Rubrik’s
Large Cloud SQL Fleet

Manjunath Chinni

Table of Contents

INTRODUCTION. . 3

MONITORING: THE FOUNDATION OF HIGH AVAILABILITY. . 4

Metrics Matter	 4
Automatic Debug Information Collection	 5
Alerts: Proactive Monitoring	 5
Weekly Review of Metrics	 6

CONSISTENCY OF CONFIGURATION: THE BACKBONE OF STABILITY. . 6

EARLY AND PROACTIVE OPTIMIZATION FOR OPTIMAL QUERY PERFORMANCE 7

Shift-Left: Optimizing During Development	 8
Managing Slow Queries in Production	 8

DESIGN CHOICES MATTER. . 9

Optimal Metadata Cleanup	 9
Connection Management and Query Caching	 9
Workload Isolation: Reducing Noise for Optimal Performance	 9

AUTOMATED SCALING. . 10

Auto-scaling and Instance Splitting	 10

STAYING AHEAD OF THE UPGRADE CURVE . . 10

INCIDENT HANDLING: LEARNING FROM CHALLENGES . . 10

CLOSING THOUGHTS. . 11

ACKNOWLEDGMENTS. . 11

Technical White paper | Insights from Engineering Robustness in Rubrik’s Large Cloud SQL Fleet﻿ 3

INTRODUCTION

At Rubrik, we rely on a multi-tenant architecture to store customer metadata in a large fleet of Cloud SQL
database instances. With numerous production deployments globally, each supporting multiple customer
accounts, maintaining high availability, performance, and robustness across this infrastructure is critical.
Managing a large fleet of Cloud SQL instances and ensuring they remain resilient and performant has been a
journey filled with valuable learnings. In this blog, I’ll walk you through the strategies, challenges, and solutions
that enable us to manage our database fleet effectively.

Technical White paper | Insights from Engineering Robustness in Rubrik’s Large Cloud SQL Fleet﻿ 4

MONITORING: THE FOUNDATION OF HIGH AVAILABILITY

METRICS MATTER

The journey to high availability starts with robust monitoring—after all, you cannot improve what you do not
observe. At Rubrik, we take a multi-layered approach to monitoring that goes beyond native tools to capture the
depth and detail we need for proactive management.

We leverage GCP’s native Cloud SQL metrics, which offer foundational insights, and extend this with a custom
metric exporter that runs as a Kubernetes service on Google Kubernetes Engine (GKE). This exporter captures
additional insights that aren’t natively available in Cloud SQL, filling critical visibility gaps.

To capture granular details at the query level, we also built a custom wrapper around the SQL driver used by
our services, which emits detailed metrics on every query. This provides us with actionable insights into query
performance and helps us identify and address inefficient queries before they become problematic.

For even more observability, we’ve enabled MySQL Performance Schema across our fleet, giving us access
to fine-grained details on MySQL internals, including memory usage internals, per-database load, and lock
contention. The metric exporter taps into this schema to collect critical information that allows us to monitor and
optimize at both a high level and in-depth.

Additionally, we run weekly pipelines that aggregate statistics on table size growth across the entire fleet,
helping us keep an eye on data bloat, potential indexing issues, and other space-related concerns. These
various sources of metrics collectively provide us with a 360-degree view of our production database instances,
laying the foundation for the stability, performance, and availability that our customers expect.

Technical White paper | Insights from Engineering Robustness in Rubrik’s Large Cloud SQL Fleet﻿ 5

AUTOMATIC DEBUG INFORMATION COLLECTION

When an alert fires, every second counts. To minimize response time and ensure effective troubleshooting,
we’ve implemented an automatic debug information collection pipeline. This pipeline is triggered whenever an
alert is raised, instantly gathering essential debug data from the affected Cloud SQL instance.

This automatic process significantly accelerates root cause analysis (RCA) and reduces the mean time to
resolution (MTTR) to minutes from several hours and even days when waiting for issue recurrence. It allows
our team to focus on diagnosing and resolving the issue rather than spending time manually collecting logs
and diagnostic data. By having the relevant information upfront, we can jump straight into incident analysis,
ultimately improving the reliability and resilience of our database fleet.

Incorporating this kind of automated data collection not only optimizes our response to incidents but also feeds
into a continuous improvement loop. With a more complete dataset on hand, we can better analyze incident
patterns, proactively refine alerts, and implement preventive measures to reduce recurrence.

ALERTS: PROACTIVE MONITORING

In our pursuit of high availability, alerting plays a pivotal role in enabling proactive monitoring and early
detection of issues across our database fleet. We’ve configured a wide range of targeted alerts, each designed
to monitor key performance indicators and operational health metrics across the databases. These alerts serve
as our early-warning system, empowering our team to address potential problems before they escalate.

Some of the critical alerts we’ve established include:

Uptime/Availability

Resource Utilization on CPU, Memory, Storage, Connections

InnoDB History List Length (HLL)

InnoDB Row Locking

InnoDB Redo Log Usage Percentage

MySQL Partition Management

In addition to these primary alerts, we have several alerts dedicated solely to proactive debug information
collection. These special-purpose alerts allow us to gather critical data as soon as anomalies are detected,
ensuring we capture a snapshot of the database’s state during early-stage incidents. By having these alerts in
place, we can streamline future root cause analyses (RCA) and mitigate issues before they develop into critical
failures.

By strategically configuring and fine-tuning these alerts, we maintain a proactive stance on database health,
helping us catch and resolve brewing issues before they impact performance or availability.

Technical White paper | Insights from Engineering Robustness in Rubrik’s Large Cloud SQL Fleet﻿ 6

WEEKLY REVIEW OF METRICS

A key part of our monitoring strategy is the weekly review of top metrics. Each week, our team gathers to
examine a curated metrics dashboard that reflects the health and performance of the entire production fleet.
This regular review serves multiple purposes:

1.	 Fostering Familiarity: By consistently engaging with production metrics, our engineers gain an intimate
understanding of normal patterns and behavior across our database instances. This familiarity is crucial
for quickly identifying deviations during incidents, ultimately reducing response times.

2.	 Boosting Confidence: Regular exposure to real-time data builds our engineers’ confidence in handling
issues under pressure. When incidents occur, they can rely on their experience and insights from these
reviews to make informed decisions faster.

3.	 Detecting Trends and Early Warnings: Weekly reviews often reveal subtle shifts in metrics that may not
yet trigger existing alerts. Identifying these trends early allows us to address potential issues proactively,
whether by adjusting configurations, tuning queries, or adding new alert conditions to cover gaps in our
monitoring strategy.

These weekly sessions are more than just a health check—they’re an opportunity to continuously improve
our monitoring setup and sharpen our team’s incident response capabilities. By regularly refining our approach
based on data and observations, we’re able to stay one step ahead of potential issues and ensure the ongoing
reliability of our production fleet.

CONSISTENCY OF CONFIGURATION: THE BACKBONE OF STABILITY

In a multi-tenant environment where customer needs vary widely, configuration consistency becomes
essential for maintaining predictable performance across our fleet of CloudSQL instances. To ensure this, our
team has established standardized policies for every critical server configuration. This approach prevents
discrepancies that could lead to unpredictable behavior, costly outages, or performance degradation.

Our guiding principle is “Look at the forest, not just a tree.” Rather than making isolated fixes, we evaluate each
server parameter in the context of the entire fleet. This holistic mindset allows us to fine-tune configurations
for the collective performance of hundreds of databases, proactively eliminating potential issues before they
impact any one instance.

For example, each CloudSQL instance can have numerous tables per customer, which could quickly exhaust
available table definition cache. By increasing the table definition cache size across the fleet, we avoid
bottlenecks without needing to manage individual instances. Similarly, we size servers based on anticipated
load to achieve an optimal balance of cost and performance.

Technical White paper | Insights from Engineering Robustness in Rubrik’s Large Cloud SQL Fleet﻿ 7

Some of the key parameters we’ve standardized include:

Number of Connections

InnoDB Redo Log File Size
(innodb_log_file_size)

InnoDB Purge Variables
(innodb_max_purge_lag, innodb_max_purge_lag_delay, innodb_purge_batch_size)

MySQL BinLog Configuration
(max_binlog_size)

Temporary Log File Size
(innodb_online_alter_log_max_size)

Table Cache Sizes
(table_open_cache, table_definition_cache)

By codifying and enforcing these configurations, we achieve uniform performance and reliability across our
global deployments, enabling our engineers to manage the fleet efficiently.

EARLY AND PROACTIVE OPTIMIZATION FOR OPTIMAL QUERY PERFORMANCE

Technical White paper | Insights from Engineering Robustness in Rubrik’s Large Cloud SQL Fleet﻿ 8

BOOSTING DEVELOPER PRODUCTIVITY WITH EARLY OPTIMIZATIONS

SHIFT-LEFT: OPTIMIZING DURING DEVELOPMENT

At Rubrik, we believe in catching potential database issues early in the development process—an approach
known as the shift-left mindset. This proactive strategy enables our Database Administrators (DBAs) to review
table designs and query structures during the development phase rather than after deployment, where fixes
can be costly and disruptive.

To support this, our engineering-wide design document template includes a dedicated section for database
design. Here, developers are required to detail aspects such as the data model, expected workload, data growth
projections, cleanup criteria, performance requirements, and security considerations. This practice ensures that
database architecture is thoughtfully integrated from the outset and aligned with long-term operational needs.

Additionally, we’ve implemented the DB Delegate program, where volunteers from various feature teams
are trained to perform schema change reviews. These delegates act as additional eyes and ears for the
DBAs, ensuring that schema changes adhere to best practices and operational requirements before they are
implemented. This distributed approach to schema reviews not only strengthens our shift-left strategy but
also fosters cross-functional collaboration, empowering feature teams to take a more active role in database
performance and scalability.

AI-Driven Query Optimization in Code Reviews

We’ve integrated automation into our code review process in which newly added queries are automatically
fed into an AI-driven optimization engine that provides suggestions to improve performance, indexing, and
structure. By receiving real-time feedback during code review, developers can refine queries before they reach
production, reducing the risk of suboptimal query patterns from impacting performance at scale. This shift-left
approach empowers our teams to maintain high performance as the system grows and evolves.

Ensuring Smooth Operations Post-Rollout

MANAGING SLOW QUERIES IN PRODUCTION

Proactive query optimization doesn’t stop with development. To ensure our databases remain efficient under
real-world loads, we analyze slow queries daily using automated tools, which systematically classify and
prioritize the most impactful slow queries, presenting them to the relevant teams for review and optimization.

This continuous review process enables us to identify and address potential performance bottlenecks before
they affect customers. By optimizing query execution paths, adjusting indexes, and eliminating inefficiencies,
we keep our databases running smoothly, ultimately contributing to a fast and seamless customer experience.

Together, these early and proactive optimization strategies create a resilient foundation for scalable
performance, allowing us to meet the growing demands of our multi-tenant environment without compromising
on speed or reliability.

Technical White paper | Insights from Engineering Robustness in Rubrik’s Large Cloud SQL Fleet﻿ 9

DESIGN CHOICES MATTER

OPTIMAL METADATA CLEANUP

Efficient metadata cleanup is essential for maintaining database performance in a multi-tenant environment.
At Rubrik, we leverage MySQL partition tables to simplify this process, converting traditionally heavy DML
operations (like bulk deletes) into streamlined DDL operations. By using commands such as ALTER TABLE
.. PARTITION, we can drop partitions instead of deleting rows, which significantly reduces server load. A
single ALTER TABLE command can efficiently drop millions of rows, making cleanup operations faster and less
resource-intensive.

To further reduce the impact of these operations, we schedule DDL-based cleanups during off-peak hours,
ensuring that they do not disrupt customer-facing services.

Our team also developed a partition management framework that empowers feature teams to easily implement
partitioning by simply specifying two parameters: interval (daily, weekly, monthly, or yearly) and retention period
(e.g., 7 days, 6 months, or 2 years). This framework simplifies the adoption of partition tables across different
features and ensures that large data tables are efficiently managed throughout their lifecycle.

CONNECTION MANAGEMENT AND QUERY CACHING

Managing connections and optimizing query flow are critical in high-traffic, multi-tenant environments. We rely
on ProxySQL to multiplex connections, which helps reduce the overhead associated with frequent connection
opening and closing. ProxySQL effectively reduces connection churn on the database server, allowing it to
handle higher loads with greater stability.

In addition, ProxySQL’s query caching capabilities significantly reduce the number of repetitive queries sent to
the database. This reduces the workload on CloudSQL instances by caching frequently accessed query results,
thereby improving response times and allowing the databases to dedicate resources to more critical or unique
queries.

WORKLOAD ISOLATION: REDUCING NOISE FOR OPTIMAL PERFORMANCE

To tackle the “noisy neighbor” problem, where high-intensity workloads impact other operations on the same
instance, we strategically separated different types of workloads into dedicated instances. Specifically, we
moved our write-heavy job framework workload onto its own set of instances, isolating it from the customer
metadata workload. This design choice allowed us to prevent the intensive, often bursty job framework
operations from interfering with the performance of metadata-related transactions, which require consistent,
low-latency access.

By isolating these workloads, we eliminated resource contention and significantly improved the stability and
predictability of both environments. This separation also enables more targeted scaling and optimization for
each workload type, ensuring that each receives the resources and configurations best suited to its unique
requirements.

Technical White paper | Insights from Engineering Robustness in Rubrik’s Large Cloud SQL Fleet﻿ 10

AUTOMATED SCALING

AUTO-SCALING AND INSTANCE SPLITTING

To maintain optimal performance and manage workload spikes effectively, we have implemented a sophisticated
auto-scaling mechanism across our CloudSQL fleet. Our monitoring systems continuously observe metrics like
CPU, memory usage, and query throughput, allowing us to proactively adjust instance sizes based on demand.
When workload increases to a sustained, justifiable level, instances are automatically upscaled to handle the
additional load, ensuring seamless performance even during traffic surges.

For instances that have grown too large due to increased data or a high volume of tenants, we employ instance
splitting. This strategy involves redistributing data and services across multiple instances, reducing the burden
on any single server. By splitting oversized instances into smaller, manageable units, we can maintain high
performance while simplifying resource allocation and troubleshooting.

STAYING AHEAD OF THE UPGRADE CURVE

In the fast-evolving landscape of database technology, staying ahead of the upgrade curve is crucial for
maximizing performance and leveraging the latest innovations. In early 2023, we undertook a comprehensive
upgrade of our entire CloudSQL fleet from MySQL 5.7 to MySQL 8.0. This strategic move was driven by our
commitment to continuous improvement and operational excellence.

Upgrading to MySQL 8.0 unlocked a host of powerful features and performance enhancements that have had
a transformative impact on our database operations. Notably, the introduction of instant column addition
significantly reduces the time required for schema changes.

Additionally, MySQL 8.0 offers increased throughput, which translates to faster data processing and improved
overall system performance. As we continue to scale our operations, these enhancements enable us to handle
higher volumes of transactions seamlessly while maintaining high levels of availability and reliability.

INCIDENT HANDLING: LEARNING FROM CHALLENGES

At the heart of our operational philosophy is a commitment to learning from every database-related incident.
Each incident undergoes a comprehensive investigation aimed at identifying root causes and eliminating them
whenever possible. Our approach is not just reactive; it’s about fostering a culture of continuous improvement
and resilience.

In cases where fully eliminating a root cause isn’t feasible, we focus on developing automated mitigation
strategies. These measures act as safeguards, helping to manage incidents more effectively and ensuring that
our systems remain robust in the face of challenges. For instance, runaway growth of the InnoDB history list
length (HLL) can be mitigated by automatically throttling update rates. By setting parameters like innodb_
max_purge_lag and innodb_max_purge_lag_delay, we enable purge threads to catch up, preventing HLL from
building up excessively.

Furthermore, each incident provides valuable insights that drive enhancements to our monitoring systems. We
continuously refine our approach by creating new alerts and introducing additional metrics, ensuring that we
have the visibility needed to detect and respond to potential issues before they escalate. This iterative process
strengthens our operational framework and helps us stay one step ahead of future challenges.

Technical White paper | Insights from Engineering Robustness in Rubrik’s Large Cloud SQL Fleet﻿ 11

rwp-insights-from-engineering-robustness-in-rubriks-large-cloud-sql-fleet / 20241127

Global HQ
3495 Deer Creek Road
Palo Alto, CA 94304
United States

1-844-4RUBRIK
inquiries@rubrik.com
www.rubrik.com

Rubrik (NYSE: RBRK) is on a mission to secure the world’s data. With Zero Trust Data Security™, we help organizations
achieve business resilience against cyberattacks, malicious insiders, and operational disruptions. Rubrik Security Cloud,
powered by machine learning, secures data across enterprise, cloud, and SaaS applications. We help organizations
uphold data integrity, deliver data availability that withstands adverse conditions, continuously monitor data risks and
threats, and restore businesses with their data when infrastructure is attacked.

For more information please visit www.rubrik.com and follow @rubrikInc on X (formerly Twitter) and Rubrik on LinkedIn.

Rubrik is a registered trademark of Rubrik, Inc. All company names, product names, and other such names in this
document are registered trademarks or trademarks of the relevant company.

Ultimately, these incidents contribute to the overall resilience of our systems, enabling us to minimize downtime
and maintain high levels of service availability. By treating each challenge as an opportunity for growth, we not
only bolster our current operations but also pave the way for a more stable and efficient future.

CLOSING THOUGHTS

At Rubrik, high availability transcends the mere avoidance of downtime; it embodies our commitment to a
culture of continuous improvement. Through meticulous monitoring, ongoing optimization, and comprehensive
incident handling, we maintain a CloudSQL fleet that is robust, scalable, and well-equipped to meet the
demands of our global customer base. By sharing our experiences and insights, we aspire to inspire others to
adopt similar practices, empowering them on their journey toward achieving high availability.

Looking ahead, our focus includes further workload separation, implementing controls to restrict per-query and
per-database resource consumption, and building developer frameworks to streamline operations such as data
cleanup, pagination, backfill, and bulk updates, ensuring efficiency and performance as we scale.

ACKNOWLEDGMENTS

This journey would not have been possible without the relentless efforts of our incredible platform database,
SRE team, and DB delegates. A heartfelt thanks to platform database team members Rajorshi, Travis, Gabriel,
Rahul, Yashwanth, Sudip, Anmol, Gurneet, Hardik, and SRE team members Prabudas, Suraj, Mihir whose
expertise and dedication have been instrumental in scaling Rubrik’s database fleet to support our ever-growing
ARR. Your commitment to excellence and innovation is what drives us forward. Thank you for being the
backbone of our success!

https://www.rubrik.com/
https://www.rubrik.com/
https://twitter.com/rubrikInc
https://www.linkedin.com/company/rubrik-inc/

	Introduction
	Monitoring: The Foundation of High Availability
	Metrics Matter
	Automatic Debug Information Collection
	Alerts: Proactive Monitoring
	Weekly Review of Metrics

	Consistency of Configuration: The Backbone of Stability
	Early And Proactive Optimization For Optimal Query Performance
	Shift-Left: Optimizing During Development
	Managing Slow Queries in Production

	Design Choices Matter
	Optimal Metadata Cleanup
	Connection Management and Query Caching
	Workload Isolation: Reducing Noise for Optimal Performance

	Automated Scaling
	Auto-scaling and Instance Splitting

	Staying Ahead of the Upgrade Curve
	Incident Handling: Learning from Challenges
	Closing Thoughts
	Acknowledgments

